Proton substructure

The physics of small systems: what to expect in eA given the "ridge" in pA and high multiplicity pp

Ulrich Heinz

In collaboration with Jordan Singer and Kevin Welsh

EIC UG Mtg. 2016, 1/7/16

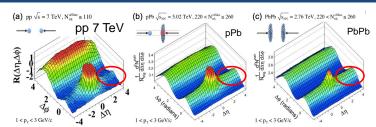
Overview

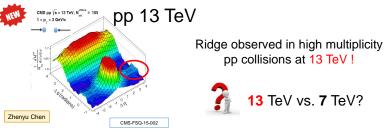
- The big picture
- 2 Flow in small systems?
 - Flow in small systems?
 - Do small systems behave hydrodynamically?
 - Collectivity in small systems
 - Initial-state momentum correlations?
- 3 What is needed to resolve this ambiguity
 - What is needed?
 - What is missing?
- 4 Proton substructure: what does a proton look like in position space?
 - CGC picture of the nucleon
 - Modeling quark substructure of the nucleon
 - Characteristics of initial entropy density distributions in pp and light-heavy collisions
 - How can the EIC help?

- Flow-like signatures of similar characteristics as those in AA collisions were also seen in pA and high-multiplicity pp.
- Seen in both single-particle observables ("radial flow") and two-particle correlations ("anisotropic flow").
- Initial-state momentum correlations can also manifest themselves as "anisotropic flow" in the final state, especially in small collision systems where they may survive final-state interactions.
- What is the true origin of these flow-like signatures? How can we separate initial-state from final-state effects, in particular in small systems?
- What is the internal phase-space structure of a proton?

Overview

- 1 The big picture
- Plow in small systems?
 - Flow in small systems?
 - Do small systems behave hydrodynamically?
 - Collectivity in small systems
 - Initial-state momentum correlations?
- 3 What is needed to resolve this ambiguity?
 - What is needed?
 - What is missing?
- 4 Proton substructure: what does a proton look like in position space?
 - CGC picture of the nucleon
 - Modeling quark substructure of the nucleon
 - Characteristics of initial entropy density distributions in pp and light-heavy collisions
- 5 How can the EIC help?


Flow in small systems? What is needed? Proton substructure How can the EIC help?

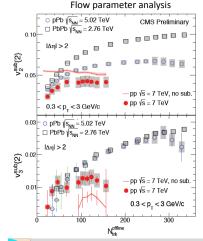

Flow in small systems?

•0000000

The big picture

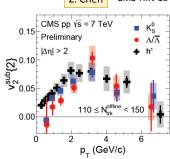
Ridge in pp, pPb and PbPb

New results from CMS


Ulrich Heinz (Ohio State)

Yen-Jie Lee (MIT)

Physics of small systems

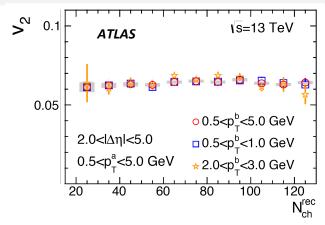

Long-range correlations in high-mult. pp

7

Z. Chen

CMS-HIN-15-009

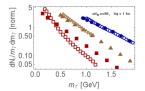
- $v_2(pp) < v_2(pPb) < v_2(PbPb)$
- $v_3(pp) \approx v_3(pPb) \approx v_3(PbPb)$, but $v_3(pp)$ deviates for $N_{trk}^{offline} \gtrsim 90$
- Mass ordering for $v_2^{sub}\{2\}$ at low p_T

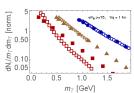


Byungsik Hong

Quark Matter 2015, Kobe

Flow in small systems?

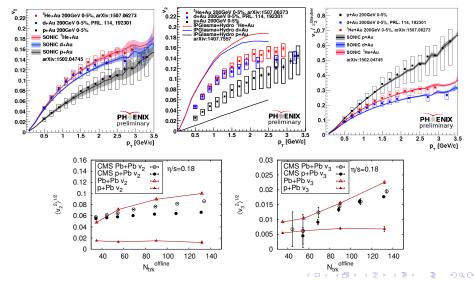



No centrality dependence of elliptic flow in pp?! Flow not just in high-multiplicity pp?! Not flow but something else?

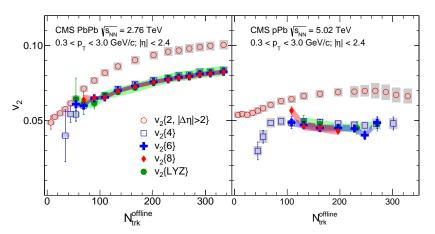
Flow in small systems?

Kalaydzhyan & Shuryak PRC91 (2015) 054913

Open symbols: CMS data; filled symbols: Glubser flow


K-p mass splitting of m_T -slopes increases with pp multiplicity

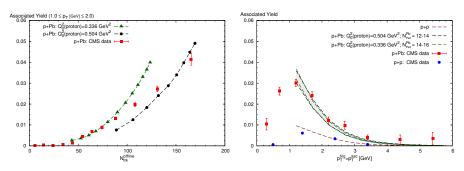
Radial flow in pp?


Do small systems behave hydrodynamically?

The big picture

Do small systems behave hydrodynamically?

Collectivity in small systems!

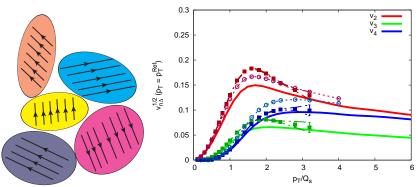


Whatever its origin, the "flow signal" represents a collective response (to what?) of all particles!

Initial-state momentum correlations?

Initial-state momentum correlations?

Dusling and Venugopalan, PRD87 (2013) 054014


Initial-state momentum (anti-)correlations from "Glasma graphs" qualitatively explain the multiplicity dependence and p_T -dependence at high p_T of the ridge yields in pPb and high-multiplicity pp collisions

Initial-state momentum correlations?

The big picture

Initial-state momentum correlations?

Lappi, Schenke, Schlichting, Venugopalan, JHEP 2016 (arXiv:1509.03499)

Spatial inhomogeneity of CGC and spatial deformation of CGC regions of homogeneity generate momentum anisotropies among the initially produced partons, corresponding to non-zero v_n for all n, with "reasonable-looking" p_T dependence.

Overview

- 1 The big picture
- 2 Flow in small systems?
 - Flow in small systems?
 - Do small systems behave hydrodynamically?
 - Collectivity in small systems
 - Initial-state momentum correlations?
- 3 What is needed to resolve this ambiguity?
 - What is needed?
 - What is missing?
- 4 Proton substructure: what does a proton look like in position space?
 - CGC picture of the nucleon
 - Modeling quark substructure of the nucleon
 - Characteristics of initial entropy density distributions in pp and light-heavy collisions
 - How can the EIC help?

What is needed to resolve this ambiguity?

 Initial conditions for the phase-space distribution of the produced matter,

$$f_{\text{matter}}(x_{\perp}, \phi_s; p_{\perp}, \phi_p; y_p - \eta_s; \tau_0)$$

which depends on the

phase-space (Wigner) distribution of the glue inside the nucleons bound into small nuclei:

$$f_{\text{glue}}(x_{\perp}, \phi_s; k_{\perp}, \phi_k; y_k - \eta_s; \tau_0)$$

 \blacksquare From f_{matter} we obtain the initial energy-momentum tensor

$$T^{\mu\nu}(\mathsf{x}_{\perp},\eta_{s},\tau_{0}) = \frac{\nu_{\mathrm{dof}}}{(2\pi)^{3}} \int d\mathsf{y}_{p} d^{2}\mathsf{p}_{\perp} \mathsf{p}^{\mu} \mathsf{p}^{\nu} f_{\mathrm{matter}}(\mathsf{x}_{\perp},\phi_{s};\mathsf{p}_{\perp},\phi_{p};\mathsf{y}_{p}-\eta_{s};\tau_{0})$$

What is needed to resolve this ambiguity?

• Once the initial $T^{\mu\nu}(x)$ is known, we can evolve it for some time $\tau_{\rm eq} - \tau_0$ with a pre-equilibrium model, match it to viscous hydrodynamic form,

$$T^{\mu\nu} = e u^{\mu} u^{\nu} - \left(P(e) + \Pi\right) \Delta^{\mu\nu} + \pi^{\mu\nu},$$

run it through viscous hydrodynamics plus hadronic afterburner, and compare its output with experiment.

■ To account for event-by-event quantum fluctuations in the initial $T^{\mu\nu}(x)$, and for thermal noise during the evolution, the dynamical evolution must be performed many times before taking ensemble averages as done in experiment.

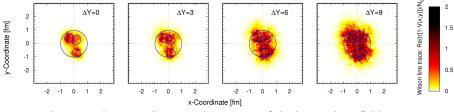
What is missing in present calculations?

Present modeling uses simplified assumptions for the initial phase-space distrib'n:

- Few models account for the initial momentum structure of the medium: most ignore it completely. \implies incorrect/unreliable initial conditions for $\Pi, \pi^{\mu\nu}$
- While granularity of the initial spatial density distribution is accounted for at the nucleon length scale, by Monte-Carlo sampling the nucleon positions from a smooth Woods-Saxon probability distribution before allowing them to collide and lose energy to create lower-rapidity secondary matter, quantum fluctuations on sub-nucleonic length scales are poorly controlled and mostly ignored. IP-Glasma includes sub-nucleonic gluon field fluctuations, but appears to get them wrong, yielding spatial gluon distributions inside protons that are too compact.
- Most approaches (e.g. PHOBOS Glauber Monte Carlo) use disk-like nucleons for computing the collision probability. More realistic collision detection using Gaussian nucleons is implemented in GLISSANDO and iEBE-VISHNU.
- Most approaches ignore quantum fluctuations in the amount of beam energy lost to lower rapidities in a NN collision. Without these, the measured KNO-like multiplicity distributions in pp collisions are not reproduced, and pp collisions produce zero ϵ_3 by symmetry. GLISSANDO and iEBE-VISHNU include pp multiplicity fluctuations, creating non-zero triangularity in pp, even without sub-nucleonic structure. 4 D F 4 D F 4 D F 4 D F

Overview

- - Flow in small systems?
 - Do small systems behave hydrodynamically?
 - Collectivity in small systems
- - What is needed?
 - What is missing?
- 4 Proton substructure: what does a proton look like in position space?
 - CGC picture of the nucleon
 - Modeling quark substructure of the nucleon
 - Characteristics of initial entropy density distributions in pp and light-heavy collisions



CGC picture of the nucleon

The big picture

"Three quarks for Muster Mark!"

- 3 valence quarks act as large-x color sources of the low-x gluon fields.
- Spatial positions of quarks at the instant of collision fluctuate from event to event and generate a lumpy color distribution at large x.
- This lumpiness is tracked by the quarks' gluon clouds, becoming more diffuse at smaller $x \Longrightarrow$ triune lumpiness of the gluon fields inside the nucleon when viewed through midrapidity particle production, with an intrinsic length scale ("gluonic radius of a quark") that appears to grow with collision energy.
- ⇒ Protons have just as much intrinsic triangularity as ³He nuclei, just on a shorter length scale. But in p+A **all** particle production occurs on a smaller length scale than in ³He+A! This affects mostly radial flow, though.

Proton substructure

The big picture

Modeling quark substructure of the nucleon I

(Ongoing work with undergraduates Jordan Singer and Kevin Welsh)

- The gluon field density inside the proton is the sum of three 3-d Gaussians of norm $\frac{1}{3}$ and width σ_g (representing the gluon clouds around the valence quarks). Default value: $\sigma_g = 0.3 \, \text{fm}$ (best fit of pPb mult. dist. at LHC)
- The quark positions (centers of the gluon clouds) are sampled from a 3-d Gaussian with width σ_q around the center of the nucleon, requiring their center of mass to coincide with the nucleon center.
- The widths are constrained by $\sigma_g^2 + \frac{2}{3}\sigma_q^2 = B$ such that the average proton density is a normalized Gaussian

$$\left\langle
ho_p(\mathbf{r}) \right\rangle = rac{\mathrm{e}^{-rac{\mathbf{r}^2}{2B}}}{(2\pi B)^{2/3}}$$

with \sqrt{s} -dependent width $B(\sqrt{s}) = \frac{\sigma_{\rm NN}^{\rm inel}(\sqrt{s})}{8\pi}$, to reproduce the measured inelastic NN cross section.

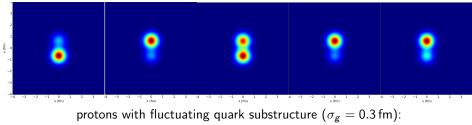
4 D > 4 A P > 4 E > 4 E > 9 Q Q

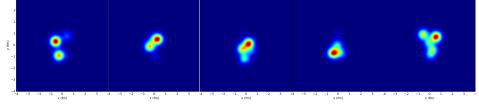
Modeling quark substructure of the nucleon II

- Projecting ρ_p along z gives the nucleon thickness function $T_N(\mathbf{r}_\perp)$ in the transverse plane.
- Folding two nucleon thickness functions yields the nucleon-nucleon overlap function $T_{NN}(\mathbf{b})$ at impact parameter \mathbf{b} (which actually depends on all 6 quark positions), from which the probability for each of the two nucleons to get wounded in the collision is computed as

$$P_{ij}(\mathbf{r}_{\perp i} - \mathbf{r}_{\perp j}) = 1 - \exp\left[-\sigma_{gg} T_{NN}(\mathbf{r}_{\perp i} - \mathbf{r}_{\perp j})\right]$$

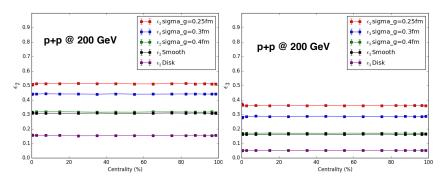
where i and j are from projectile and target, respectively. The gluon-gluon cross section σ_{gg} is determined by the normalization of P_{ii} to the inelastic NN cross section.


■ For each wounded nucleon, all three quarks are assumed to contribute to energy production at midrapidity, with a Gaussian density profile of width σ_{σ} and independently fluctuating (Γ-distributed) normalization, with variance adjusted to reproduce measured pp multiplicity distributions.

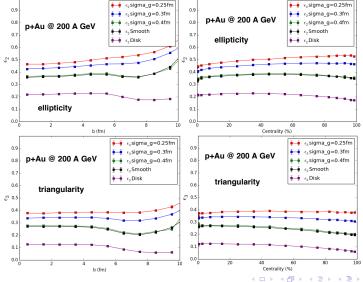

イロト イ御ト イラト イラト 一多一

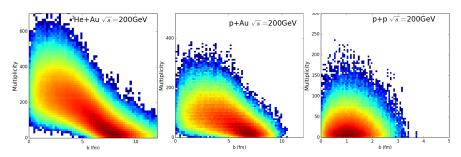
Characteristics of initial entropy density distributions in pp and light-heavy collisions

Initial entropy density in $b=1.3 \,\mathrm{fm}$ pp collisions


smooth Gaussian protons:

For protons with quark substructure the Gaussian collision criterium appears to favor somewhat more compact distributions of produced entropy density

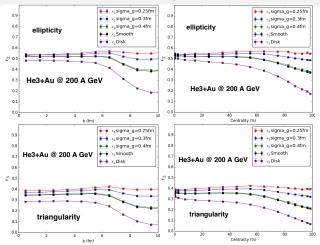

$\varepsilon_{2,3}$ vs. centrality: pp @ \sqrt{s} =200 A GeV


- lacktriangleright Ellipticity and triangularity show strong sensitivity to σ_g .
- Since $\sqrt{B} = 0.408 \, \text{fm}$ at $\sqrt{s} = 200 \, \text{GeV}$, quark subdivision with $\sigma_g = 0.4 \, \text{fm}$ is almost indistinguishable from a smooth Gaussian proton.
- Disk-like collision detection gives smallest eccentricities.

Characteristics of initial entropy density distributions in pp and light-heavy collisions

$\varepsilon_{2,3}$ vs. centrality: p+Au @ \sqrt{s} =200 A GeV

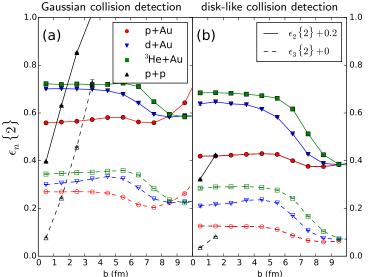
In p+p and light+heavy "centrality" does not measure b!



pp multiplicity fluctuations destroy strong anticorrelation between multiplicity and impact parameter seen in Au+Au and Pb+Pb

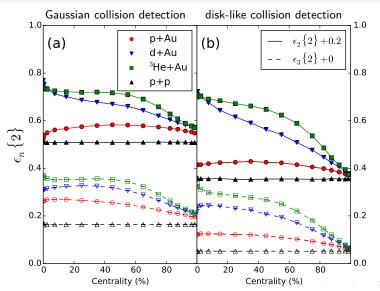
⇒ "centrality" measured by multiplicity is a misnomer in collisions involving light projectiles

Characteristics of initial entropy density distributions in pp and light-heavy collisions

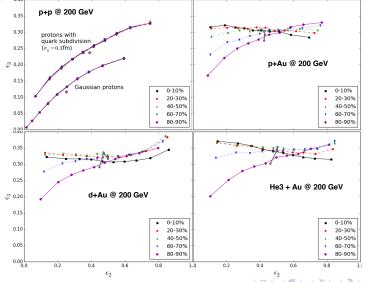

$\varepsilon_{2,3}$ vs. centrality: ³He+Au @ \sqrt{s} =200 A GeV

Reduced sensitivity to p-substructure and σ_g for larger projectiles, except in peripheral events

25 / 34


$\varepsilon_{2,3}$ vs. impact parameter for different collision systems

Characteristics of initial entropy density distributions in pp and light-heavy collisions


$\varepsilon_{2,3}$ vs. "centrality" for different collision systems

Characteristics of initial entropy density distributions in pp and light-heavy collisions

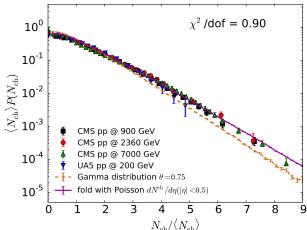
ε_2 - ε_3 correlations: pp & light-heavy collisions, $\sigma_g = 0.3$ fm

- The big picture
- 2 Flow in small systems?
 - Flow in small systems?
 - Do small systems behave hydrodynamically?
 - Collectivity in small systems
 - Initial-state momentum correlations?
- 3 What is needed to resolve this ambiguity
 - What is needed?
 - What is missing?
- 4 Proton substructure: what does a proton look like in position space?
 - CGC picture of the nucleon
 - Modeling quark substructure of the nucleon
 - Characteristics of initial entropy density distributions in pp and light-heavy collisions
- 5 How can the EIC help?

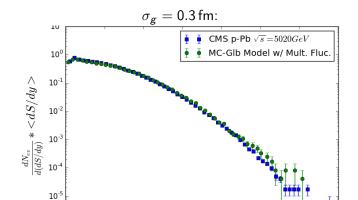
EIC UG Mtg. 2016, 1/7/16

How can the EIC help?

Measure the average gluon Wigner distribution


$$\langle f_{\text{glue}}(x_{\perp}, \phi_{s}; k_{\perp}, \phi_{k}; y_{k} - \eta_{s}) \rangle$$

and its fluctuation spectrum in e+A for A=p, d, ${}^{3}He$, ...


- \blacksquare As we learned from the study of flow coefficients v_n in heavy-ion collisions, this requires to measure different types of two-particle correlations that access different moments of the probability distributions for f_{glue} and/or its (spatial) azimuthal Fourier moments.
- I don't know how to do this, but I am sure the theory for such measurements can be developed along the same lines as for the GPDs which are the zeroth Fourier moment of f_{glue} .

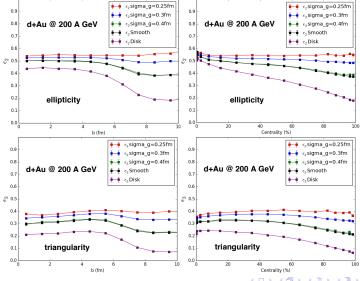
The End

Same for smooth Gaussian and quark-subdivided protons, after rescaling of the Γ-distribution:

Proton substructure

6

10⁻⁶ 0


 dN_{ch}/dy $< dN_{ch}/dy >$

dS/dy

 $\langle dS/dy \rangle$

Proton substructure

$\varepsilon_{2,3}$ vs. centrality: d+Au @ \sqrt{s} =200 A GeV

